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Abstract

Wave propagation in light weight plates with truss-like cores is investigated. For generic light weight plates with

periodicity in one dimension the wavenumber content is characterized by strong directional wave propagation. Also wave

beaming results in some frequency bands, where local vibrations are of primary concern. The strong periodic pass- and

stop-band behaviour detected previously for profile strips is transformed into a spatial stop- and pass-band distribution of

high and low vibration zones. As a result, the stop-bands of the two-dimensional investigation are weakened for point

excitation of full plates. This is manifested by a rising real part of the input mobilities. In these lateral stop-bands the

imparted power is transmitted mainly in the direction parallel to the webs of the inner core. In the low frequency region,

where global plate waves dominate, the vibrational behaviour can be reduced to equivalent plate models. For profiles with

inclined webs, global orthotropicity is limited and global bending wave dispersion is similar irrespective of direction. For

profiles with solely vertical webs, strong orthotropicity with significantly higher wavenumbers in the lateral direction,

normal to the webs, is demonstrated.

Different methods for the extraction of theoretical and experimental dispersion characteristics of the plates are applied

and discussed. The theoretical dispersion characteristics are validated on a regional train floor section which serves as an

application example.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in light weight profile strips with different truss-like core geometries is thoroughly
investigated in Ref. [1]. Typical periodic system effects like pass- and stop-band behaviour are identified. The
results presented there are valid also for plates with line force excitation perpendicular to the strip plane in the
direction parallel to the intermediate core plates. In this paper the wave propagation in the light weight plates
illustrated in Fig. 1 is investigated. Studies on the two-dimensional mid- and high frequency wave propagation
in such light weight plates are rare and have not dealt with the occurrence of periodic system effects.

For structure-borne sound applications the loads are often concentrated to small areas where, e.g. machine
footings are attached to the light weight plate. As long as the wavelength is larger than the contact dimension
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

f frequency
j

ffiffiffiffiffiffiffi
�1
p

k wavenumber
lx length of subelement
n; p; q integer values
t thickness
v velocity
A, B, C labels for investigated generic profiles
E0 Young’s modulus
L length of finite strips A–C
Le periodic length
N number of sampling points
V velocity spectrum (wavenumber do-

main)
0 zero matrix or vector
A;B reduction matrices
F force vector
I identity matrix
K dynamic stiffness matrix
M mass matrix
S stiffness matrix
T transfer matrix
a web angle
� phase constant
Z loss factor

l eigenvalue
m propagation constant
n Poisson’s ratio
r mass density
o circular frequency
n displacement vector
/ right eigenvector
U right eigenvector matrix

Indexes

b back
e element
f front
i index
l left
r right
x x-direction
y y-direction
z z-direction

Superscripts

�1 matrix inverse
T matrix transpose
H matrix Hermitian transpose (complex

conjugate and transpose)
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they can be treated as point contacts. For the case of point force excitation the wave propagation spreading
from the excitation point is treated in Sections 2 and 3. One of the questions posed is if the pass- and stop-
band effects are also distinct for point excited plate configurations. Langley and Bardell show in Ref. [2] that
for two-dimensional periodic systems (beam grillages), the wave propagation can be highly directional. Similar
results are reported by Ruzzene et al. [3]. It is investigated here whether such a phenomenon also exists for a
two-dimensional structure with periodicity only in one direction. Therefore the forced response of typical
profiles is calculated using standard finite element techniques. For a physical understanding and interpretation
of the wave propagation in the light weight profiles, the two-dimensional wavenumber content is extracted
from the calculated vibration fields. Results of the spatial Fourier-transform method are shown and reveal the
wave beaming effects for the investigated light weight plates. As an alternative to the spatial Fourier transform
the dispersion characteristics of propagating waves can be extracted from a single subelement, repeated in
both directions, resulting in the so-called phase constant surfaces. Results are compared with DFT and reveal
the enhanced resolution capabilities of the subelement approach for periodic profiles. For profiles of finite
width the wavenumber content is extracted using the waveguide finite element (WFE) technique, [4,5].
A narrow slice of the complete waveguide is modelled with standard FE methods and periodic system theory
delivers the characteristic waves propagating in the z-direction in the infinite light weight plate section.
2. Dispersion characteristics using DFT

In order to understand the wave propagation in the light weight profiles, the wavenumber content for
propagation in the x- and z-direction is sought (see Fig. 1). There are several options to extract the
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Fig. 1. Cut-outs of investigated generic light weight profiles and nomenclature: (a) profile A, (b) profile B, (c) profile C (d) nomenclature

for subelement dimensions. Arrows in (a) indicate the extreme normal force excitation positions (left arrow at centre of plate strip and

right arrow at a stiffener position). Coordinate nomenclature: x: width; y: height; z: length.
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wavenumber content from measured or calculated data. A lot of work in the area of one-dimensional
wavenumber estimation has been published, see, e.g. Refs. [6–8]. For two-dimensional extraction procedures
details can be found in Refs. [9–11]. Mainly for usage with experimental data a correlation method [10] and the
inhomogeneous wave correlation (IWC) method [9,12] are introduced. Both are intended to overcome some
limitations of the standard spatial discrete Fourier transform technique when only limited and possibly noisy
(experimental) data is available. For this study calculated vibration fields with high resolution are available so
that the spatial discrete Fourier transform (DFT) technique is applicable. A clearer picture of the two-
dimensional wave propagation can be gained with the evaluation of the phase constant surfaces from the two-
dimensional-periodic subelement. This is compared with the DFT results in Section 3. If the system can be
handled as a waveguide, in which wave propagation is of primary concern only along the waveguide, i.e.
parallel to the inner webs of the profile, the dispersion characteristics for this direction can be investigated, e.g.
with spectral or WFE techniques, see, e.g. Refs. [4,5,13]. From these methods the properties of characteristic
waves propagating in the waveguide direction can be deduced. For profiles of finite width this approach is
favourable for investigations of wave propagation in the waveguide direction. This approach is chosen for the
investigation in Section 4. The IWC method is applied for the experimental dispersion investigation of a train
floor in Section 5.2 and results are related to the DFT results.

2.1. Discrete spatial Fourier transform

For the application of the DFT-method, a spatial sampling at points on a discrete two-dimensional grid is
necessary, resulting in the two-dimensional discrete Fourier transform. Having a profile section of dimensions
Lx and Lz with Nx �Nz equally distributed spatial sampling points vnx ;nz

¼ vðnxDx; nzDzÞ; nx ¼

1; 2; 3; . . . ;Nx; nz ¼ 1; 2; 3; . . . ;Nz, results in the following transformation:

V p;q ¼ V ðpDkx; qDkzÞ ¼ DxDz
XNx

nx¼1

XNz

nz¼1

vnx;nz
e�j pDkx xp e�j qDkz zq ,
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Table 1

Geometry and material properties of investigated profiles

Profile A B C

touter (mm) 3.0 3.0 3.0

tinner (mm) 3.0 2.6 8.5

Web angle a (deg) 45.0 26.6/90.0 90.0

Periodic length lx (mm) 100 100 100

Total length Lx (mm) 3000 3000 3000

Total length Lz (mm) 5000 5000 5000

E0 (N/m2) 7:2� 1010 7:2� 1010 7:2� 1010

n (–) 0.34 0.34 0.34

Z (–) 0.01/0.1 0.01/0.1 0.01/0.1

r (kg=m3) 2700 2700 2700

Total mass per unit area (kg=m2) 27.7 27.7 27.7
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Dkx ¼
2p
Lx

; Dkz ¼
2p
Lz

. (1)

This is a direct extension of the one-dimensional spatial Fourier transform applied in Ref. [1], where
limitations and practical aspects of the method and its application are discussed. As stated already for the one-
dimensional case, the DFT-approach is beneficial for a specific forced excitation, as it directly results in the
energy distribution among different waves for this excitation. On the other hand this can be a limitation if a
more general understanding of possible wave propagation in the light weight plates is sought. It cannot be
directly assured that all the important wave types are excited and hence can be extracted. For a more general
investigation, the WFE method or the phase constant surface evaluation presented later on proves more
appropriate.

The velocity field data on a regular spaced grid is calculated using standard FE-modelling techniques using
MSC NASTRAN.1 In order to suppress reflections from the model boundaries, the edge regions (0.5m width)
are highly damped (loss factor 0.1). For a reduced calculation effort, symmetry is exploited and only a quarter
model with symmetry boundary conditions is established. The principal geometries of the investigated profile
cores are shown in Fig. 1. Details of geometric dimensions and material properties are listed in Table 1. The
thickness of the inner webs of profiles B and C is adjusted to maintain constant total mass per unit area.

As shown already in Ref. [1] the vibrations of truss-like light weight objects can be divided in global and
local wave motion. The global waves dominate at lower frequencies whereas at higher frequencies both global
and local vibrations are of significance.

The geometry of the truss-like light weight profiles is highly orthotropic as the intermediate plates
are orientated only in the z-direction. Despite this geometrical orthotropicity, the global vibrations for profiles
of type A are mainly isotropic as shown in Ref. [14]. The static and low frequency bending stiffnesses are
dominated by the face plates which do not comprise any orthotropicity. The investigation sheds some light on
the influence of generic geometry (A, B, C) on vibrational orthotropicity.

Representative for the global wave region, the 400Hz results for all three profile types are presented in
Fig. 2. The wavenumber content is displayed on a logarithmic grey scale and strong contributions are dark
shaded. The results presented correspond to unit normal point force excitation at the centre of a plate field
(A and C) or an excitation at a stiffener position (B). The normal velocity of the outer plate of the excited side
is selected for the evaluation. The influence of excitation position is treated in Ref. [15] and Section 2.2 and can
be summarized by a quantitative variation in the wavenumber content, but the inherent waves are similar.

The results in Fig. 2 show the dominance of the global, low wavenumber waves for all profiles at 400Hz.
The response of A and B is similar, the wavenumber content displaying the isotropic nature of the wave
propagation with a quarter circle at very low wavenumbers. In contrast to this the velocity field for profile C
1CQUAD4 shell elements, element length 12:5mm, frequency limit according to six elements per (bending) wavelength criterion is about

5300Hz, direct frequency response calculation method (SOL 108) is used.
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Fig. 2. Velocity fields for normal force excitation (left) and DFT wavenumber content (right) (f ¼ 400Hz). (a) Profile A, plate field

excitation, (b) profile B, stiffener excitation and (c) profile C, plate field excitation.
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comprises much shorter wavelength in the x-direction (kx ¼ 30m�1, kz ¼ 8m�1, see Fig. 2(c)). This is directly
reflected by the elliptical wavenumber curve in the DFT result with a higher wavenumber for kx.

Although the global waves dominate the vibration, there are also higher wavenumber components included,
representing some local behaviour. For the periodicity in the x-direction, a higher wavenumber component is
present with a distance of 2p=lx ¼ 62:8m�1 to the global waves, where lx is the periodic length of 0.1m in the
x-direction.

At high frequencies the significance of the global waves decreases (Fig. 3) and the velocity field is dominated
by high wavenumber (short wavelength) components. These wavenumber components comprise an interesting
feature. They propagate only in the direction of a limited angular segment, which is related to strong wave
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Fig. 3. Velocity fields for normal force excitation (left) and DFT wavenumber content (right) (f ¼ 2000Hz). (a) Profile A, plate field

excitation, (b) profile B, stiffener excitation and (c) profile C, plate field excitation.
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beaming effects most clearly visible for types A and C. For profile A the main direction is oblique, whereas for
profile C the lobes are orientated mainly in the z-direction. This kind of wave beaming is similar to the results
presented by Langley [2,16] for point excited periodic beam grillages. This means that wave beaming is not
only existing for structures with periodicity in both directions, but also for structures comprising periodicity
only in one direction.

At still higher frequencies the wave propagation characteristics shown in Fig. 4 for 5000Hz arise. For
profile A strong wave beaming effects are still visible. The wave propagation in profile C arises mainly along
the excited plate strip in the z-direction. Nonetheless, some less pronounced waves with periodic wavenumber
content propagate also in the x-direction, clearly visible in the wavenumber domain.
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Fig. 4. Velocity fields for normal force excitation (left) and DFT wavenumber content (right) (f ¼ 5000Hz). (a) Profile A, plate field

excitation, (b) profile B, stiffener excitation and (c) profile C, plate field excitation.
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2.2. Frequency dependent dispersion from DFT

In order to get insight into the frequency dependent behaviour and for comparison with WFE and
phase constant surface results, the wavenumbers in the main directions x and z are extracted from the
two-dimensional-DFT results. The extraction procedure is performed with a frequency increment of 50Hz
and results are shown with a shaded grey scale in Figs. 5–7 for the different generic profiles and excitation
positions. For comparison, the plots include the results of the phase constant surface investigation presented
in Section 3 with full black lines. As expected the dispersion in the x-direction is very similar to
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Fig. 5. Dispersion characteristics of profile A extracted from the phase constant surfaces in (a) the x- and (b) the z-direction and DFT

results with shaded grey scale [dB re. 5e� 8m=s]. DFT results for normal unit force excitation at stiffener position.
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the characteristics obtained from the two-dimensional strip investigation presented in Ref. [1]. The periodic
stop- and pass-band behaviour is distinct especially for profile C with two wide stop-bands (400–1600Hz and
2200–4100Hz). Moreover the periodic wavenumber content with spacing 2p=lx is clearly visible in the pass-
bands.

The influence of force position is studied and the results, not included for the sake of brevity, reveal that
the same waves are inherent in the structure independent of excitation position but with different ampli-
tudes. The plate field excitation tends to excite higher wavenumbers, i.e. local waves, than the stiffener
excitation.

As expected by the plate geometries, wave propagation in the x-direction is highly influenced by the
structural periodicity and, to different extents, stop- and pass-band behaviour is observed. Wave propagation
in the z-direction, parallel to the intermediate plates, is much more distinct and exists in the complete
frequency range. It starts with global bending wave behaviour at low frequencies and experiences a transition
to local plate strip bending wave behaviour at high frequencies. This is similar to, e.g. dispersion in cylinders,
where global torsional and bending waves of the complete cylinder dominate at low frequencies and change to
bending dispersion of the hull at high frequencies.

The limited resolution of the DFT results makes the interpretation somewhat difficult. The WFE
method and the phase constant surface results will give some further insight into the wave propagation in the
z-direction and the corresponding characteristic waves.
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Fig. 6. Dispersion characteristics of profile B extracted from the phase constant surfaces in (a) the x- and (b) the z-direction and DFT

results with shaded grey scale [dB re. 5e� 8m=s]. DFT results for normal unit force excitation at stiffener position.
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3. Dispersion characteristics using phase constant surfaces

3.1. Theory

Based on two-dimensional-periodic system theory the so-called phase constant surfaces can be extracted
from a reduced eigenvalue problem of the two-dimensional-periodic subelement [2,17,18].

The naming convention for the subelement used for extraction of the phase constant surfaces is shown in
Fig. 8. In contrast to the formulation by Mead et al. [17], no inner degrees of freedom (dof) and no dof solely
related to the left and right boundaries are present. This is due to the fact that the extension in the z-direction
is intended to be very small in order to achieve a high limiting wavenumber in this non-periodic direction.

Starting with the definition of the displacement and force vectors,

n ¼ ½nbnf nlf nlbnrbnrf �
T, (2)

F ¼ ½FbFf Flf FlbFrbFrf �
T, (3)

the undamped equations of motion with stiffness matrix S and mass matrix M read:

ðS� o2MÞn ¼ F. (4)

Using Bloch’s theorem relating displacement and forces at the boundaries of the periodic subelement, the
equations of motion can be condensed in the case of free wave propagation. The detailed Bloch conditions
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Fig. 7. Dispersion characteristics of profile C extracted from the phase constant surfaces in (a) the x- and (b) the z-direction and DFT

results with shaded grey scale [dB re. 5e� 8m=s]. DFT results for normal unit force excitation at centre of plate field.
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read

nb ¼ emznf ,

nlb ¼ emznlf ,

nrb ¼ emxþmznlf ,

nrf ¼ emxnlf , (5)

Fb ¼ �e
mzFf ,

Flb ¼ �e
mzFlf ,

Frb ¼ þe
mxþmzFlf ,

Frf ¼ �e
mxFlf . (6)

Using these conditions, reduced vectors can be used

nred ¼ ½nf nlf �
T, (7)

Fred ¼ ½Ff Flf �
T. (8)
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From the reduced vectors the full vectors can be calculated using the Bloch conditions in matrix form,

n ¼ Anred with A ¼

Ib e
mz 0

If 0

0 Ilf

0 Ilb e
mz

0 Irb e
mxþmz

0 Irf e
mx

0
BBBBBBBBB@

1
CCCCCCCCCA
, (9)

F ¼ BFred with B ¼

�Ib e
mz 0

If 0

0 Ilf

0 �Ilb e
mz

0 þIrb e
mxþmz

0 �Irf e
mx

0
BBBBBBBBB@

1
CCCCCCCCCA
. (10)

Introducing the reduced force and velocity vectors in Eq. (4) and pre-multiplying with AH results in a reduced
eigenvalue problem with reduced mass and stiffness matrices Mred and Sred.

ðSred � o2MredÞnred ¼ 0, (11)

with

Sred ¼ AHSA; Mred ¼ AHMA.

The right side of Eq. (11) is 0 for purely imaginary propagation constants, i.e. purely propagating waves
without losses. For each combination of purely imaginary mx, mz several real eigenvalue solutions for o

2 exist.
The resulting triples mx, mz, o form the so called phase constant surfaces representing the dispersion
characteristics of the infinite profile formed by repeated subelements in the x- and z-direction.
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3.2. Numerical results

Phase constant surfaces are calculated from FE-subelement models of profiles A, B and C with a mesh size
of 10mm (see Fig. 9).

As the phase constant surfaces are difficult to interpret directly, contours for selected frequencies are
presented in Fig. 10. The contour lines represent the wavenumber content for these selected frequencies.
Periodicity in the x-direction is accounted for in the plotted results by including higher space harmonics
up to kx ¼ 200m�1. For comparison, the DFT results of Section 2.1 are included by colour shading in the
plots, while the contour lines are included with dark full lines. The agreement between DFT results
and contour lines is high. The comparison of the phase constant surface dispersion results with the spatial
Fourier transform results reveals the strength of the former to identify clearly the possible inherent
propagating waves. The drawback is that the energy distribution among the different components of the space
harmonics and the different wave types is not readily given for a specific excitation. This is particularly the
case for the periodic x-direction. Wave beaming plays a dominant role in some frequency bands, as expected
already from the DFT results. For low frequencies global waves are prominent. With increasing frequency
new wave types cut on, increasing the complexity of the wavenumber content. For profile C in particular, the
distinct pass- and stop-band behaviour for bending wave propagation in the x-direction is obvious. Significant
lateral wave propagation is possible only in the pass-bands 1500–2200Hz and beyond 4200Hz, see Figs. 10(d)
and 5(a).

For propagation in the x- and z-direction the frequency dependent dispersion curves extracted are included
in Fig. 5 for profile A, Fig. 6 for profile B and Fig. 7 for profile C with full lines. The dispersion curves for kx

agree, as expected, with the results of the two-dimensional investigation presented in Ref. [1].
The two-dimensional wave propagation results corroborate the included DFT results with much clearer

pictures of the inherent possible waves. Moreover, the calculation and modelling effort is drastically reduced
in comparison with the spatial Fourier transform approach as only one single periodic FE-subelement has to
be modelled and calculated.

4. Dispersion characteristics using waveguide finite element technique

It is not directly possible to identify the wave shapes of the inherent waves in the profile from the full three-
dimensional-FE-calculations or the phase constant surface results. These wave shapes are useful to gain
insight into the wave propagation process. Moreover, full three-dimensional-modelling and FE-calculation of
the light weight profiles is quite demanding with regard to computer resources and evaluation time. Therefore,
a different approach is aimed at in order to investigate the wave propagation. In many applications, e.g. in
train carriages the extension of the profiles along the carriage can be quite long, so that the structure-borne
sound propagation is similar to an infinite extension in this direction whereas it is finite in the lateral direction.

The option is then to model only a cross section of the complete profile and to use WFE technique for the
infinite extension in the z-direction. In contrast to the spectral finite element formulation introduced by
Finnveden [19], there is no need to create new element types for the calculation. Standard FE-libraries and
packages can be used to create the dynamic stiffness matrix of a cross section. This greatly enhances the
applicability for general use so that complex geometries can be modelled easily.

4.1. Theory

The WFE approach models a section of the strip in the z-direction by conventional FE-methods using shell
elements. An example of such a strip is shown in Fig. 19(b) which is investigated in Section 5.2 This technique
results in quite small FE-models as only a small part of a complete plate has to be modelled. For periodic
strips in the x-direction it is sufficient to model only one subelement (see, e.g. Fig. 9). Extended sections in the
x-direction can be assembled from these subelements by using standard FE-assembling methods. In
2In Ref. [1] the investigated strip is similar in shape, but in that case no extension in the z-direction is modelled and beam elements are

used to calculate the wave propagation in the x-direction only.
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Fig. 11. Artificial periodic subelement (marked in black) as part of a complete light weight plate.
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analogy to the case of multi-coupled periodic elements, it is assumed that this section is not only assembled
in the x-direction, but repeated in the z-direction also to form an infinite plate in the latter direction
(see Fig. 11).

Now the wave propagation in the z-direction can be investigated in analogy to multi-coupled periodic
systems. Defining the edges of the section in the z-direction as the front and back end of the periodic element
and assembling the transfer matrix offers the opportunity to solve the transfer matrix eigenvalue problem
directly or based on the dynamic stiffness matrix. This approach has been used for rails to predict the wave
propagation along the rail by calculating a small section of the rail, see, e.g. Refs. [20–22]. One problem for a
complete profile strip is that a high number of coupling nodes is introduced enlarging the transfer matrix
involved. In some cases the method can become unstable, but this instability can be circumvented by using
appropriate FE-elements and a stable implementation to solve the eigenvalue problem. For details see,
e.g. Refs. [23–25]. The same technique is also used for investigations of wave propagation in ultrasonics,
e.g. Refs. [26,27].

The WFE-calculation is based on a standard FE-model of a subelement marked in black in Fig. 11 or a
complete cross section model as shown in Fig. 19(b). Using the mass and stiffness matrices M and S, the
equation of motion for harmonic excitation using the time base ejot and structural damping with loss factor Z
reads

ð�o2Mþ ð1þ jZÞSÞn ¼ F. (12)

The dynamic stiffness matrix K is defined and partitioned in the front (f) and back (b) dofs, see Fig. 8.3

Kn ¼
Kff Kfb

Kbf Kbb

" #
nf

nb

( )
¼

Ff

Fb

( )
. (13)

A wave basis can be established based on the solution of the eigenvalue problem of the transfer matrix T,
relating the front and back edges of the subelement. The transfer matrix reads

T
nf

Ff

( )
¼

nb

�Fb

( )
. (14)

The transfer matrix can be established from the partitioned dynamic stiffness matrix:

T ¼
�K�1fb Kff K�1fb

�Kbf þ KbbK
�1
fb Kff �KbbK

�1
fb

2
4

3
5. (15)
3For the applications used here no inner dofs are used in the subelement model so that the dynamic stiffness matrix contains only the

front and back dofs. Otherwise the inner dofs have to be condensed.
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Fig. 12. Wavenumber content of single subelement in the z-direction (0:1 m width): (a) profile A, (b) profile B and (c) profile C.
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Based on Bloch’s theorem, relating the front and back edges of all the connected elements with a constant
amplitude and phase shift l, the eigenproblem for free wave propagation can be defined as

T
nf

Ff

( )
¼ l

nf

Ff

( )
; l ¼ ej kzLe . (16)

Thence, the wavenumber kz can be related directly to the eigenvalues l with the periodic length Le in the
z-direction. In undamped systems the waves are either purely propagating (jlj ¼ 1), decaying (ImðlÞ ¼ 0), or
complex for all remaining l. Though the mathematical solution is ambiguous with a periodicity of 2p=Le for
the real part of the wavenumber, a distinct identification, in this case in z-direction, is possible in contrast to
most typical periodic systems. Assuring a high wavenumber periodicity length by selecting a very small
periodic length Le, the solution for lowest wavenumbers gives the physical results. For accurate results, the
periodic length has to be much smaller than any occurring physical wavelength, kzLeo1. This criterion is in
accordance with standard FE-modelling guidelines where six elements per wavelength is a common rule of the
thumb. As pointed out by Mead in [28] a selection of a small Le increases the accuracy without increasing
calculation time as the dimensions of the eigenproblem to solve are independent of this choice. This implies a
significant advantage over standard FE-modelling techniques.4
4The selection of a small Le is bounded by numerical issues, resulting, e.g. from round-off errors in the corresponding matrices for very

small elements [25].
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Fig. 13. Selected wave shapes of single subelement profile A. (a) kz ¼ 4:7m�1, f ¼ 500Hz; (b) kz ¼ 37:7m�1, f ¼ 2000Hz and

(c) kz ¼ 13:6m�1, f ¼ 5000Hz. Cross sectional plots (x–y) are included at the bottom for z ¼ 0.
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The wave basis is constituted by the pairs of negative and positive travelling waves with the eigenvalues li

and the corresponding right eigenvectors as defined in Eq. (16), /i ¼ ½nf ;iFf ;i�
T, which define the wave shapes.

These wave vectors can be assembled in an eigenvector matrix U.
4.2. Wave propagation in single subelement profiles

To gain insight in the principal wave propagation features of the generic light weight profiles the different
subelements are investigated with free boundary conditions at the left and right edge at first, forming profiles
of single subelements in the x-direction.

The dispersion characteristics of the three configurations are extracted from the FE-models shown in Fig. 9,
using shell elements with an element length of 10mm.

All six dof at each node including the in-plane rotations are used in the extraction procedure.5

The propagating waves are identified by using a limit for l, typically 0:99ojljp1. The real part of these
wavenumbers is plotted in Fig. 12 for subelements A–C.

In the low frequency regime up to about 600Hz for profile A global waves with wavenumber up to 8m�1

are present. A typical wave shape is shown for profile A in Fig. 13(a) for 500Hz. For higher frequencies wave
propagation in the member plates cuts on and wave shapes with these local vibration patterns are shown for
2000 and 5000Hz. The shading indicates the displacement in the y-direction.
5CQUADR shell elements are used for a stable wavenumber extraction. In contrast to the CQUAD4 elements, these elements include

the in-plane rotational dof. This is important to represent the waves in the diagonal stiffeners correctly, where a portion is in-plane also

[29].
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For profile B local wave propagation starts already at 300Hz. This is related to the special layout of the
subelement with three free plate edges on both lateral edges. The corresponding wave shapes are plotted in
Fig. 14.

For profile C some characteristic waves are shown in Fig. 15. The wavenumber content comprises less
branches which can be explained by four similar plate fields concentrating to the same bending wavenumbers.

All the profiles show a global bending branch which continues at high frequencies and the non-dispersive
longitudinal wave branch with low wavenumbers, reaching a wavenumber of about 7m�1 at 5000Hz.
4.3. Wave propagation in multiple subelement profiles

The dispersion investigation of a single free subelement profile is not representative for industrial
applications where a full plate consists of several adjacent subelements. Hence, it is necessary to investigate the
influence of building a complete profile of the subelements. In order to get an idea of the general trends, a
calculation with five subelements side by side is performed. The resulting dispersion characteristics for five
subelements are shown in Fig. 16.

Comparing the dispersion plots for one and five subelements, it is obvious that the number of propagating
waves increases with the plate width. Despite the diversity of waves it is possible to distinguish different local
wave groups that can be found in the dispersion plots irrespective of plate width. Exemplified for profile A the
following observations can be made:
�

Fig

(c)
The dispersion curve with the highest wavenumber is related to edge waves of the cantilevered sections.
Because of the free edges these are the first local waves to cut on (see Fig. 17(a)).
. 14. Selected wave shapes of single subelement profile B. (a) kz ¼ 13:6m�1, f ¼ 500Hz; (b) kz ¼ 42:9m�1, f ¼ 2000Hz and

kz ¼ 77:7m�1, f ¼ 5000Hz. Cross sectional plots (x–y) are included at the bottom for z ¼ 0.
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Fig. 15. Selected wave shapes of single subelement profile C. (a) kz ¼ 5:7m�1, f ¼ 500Hz; (b) kz ¼ 39:4m�1, f ¼ 2000Hz and

(c) kz ¼ 20:8m�1, f ¼ 5000Hz. Cross sectional plots (x–y) are included at the bottom for z ¼ 0.
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�
 The second group is related to waves comprising first-order mode shapes of the plate strip members. For
the waves with the highest wavenumbers in this group, adjacent plate strips vibrate in anti-phase (simply
supported mode shape, Fig. 17(b)), whereas for the lower wavenumbers they vibrate in-phase (clamped
mode shape, Fig. 17(c)). This behaviour is similar to the characteristic wave shapes of a simply supported
periodic beam [30, p. 186]. For a fixed wavenumber the region between these extremes can be regarded as a
wave pass-band with the bounding frequencies of the plate strip with either simply supported or fixed edges.

�
 The third group (k ¼ 60267m�1 for 5000Hz) is dominated by vibrations of the intermediate inclined webs

in the first cross mode (see Fig. 17(d)).

�
 The fourth group (k ¼ 35248m�1 for 5000Hz) is characterized by second-order cross modes of the

outer plate strips. Again the high wavenumber limit of this group corresponds to simply supported
vibrations of the members (Fig. 17(e)) and the lower edge is related to clamped motion, not shown for the
sake of brevity.

�
 In the low wavenumber range (k ¼ 5217m�1 for 5000Hz) the waves comprise mainly rotational behaviour

at the joints (Fig. 17(f)).

�
 Oblique directional wave propagation can be observed for the upper edges of the wave groups (Fig. 17(b)

and (e)).

Similar observations for infinite periodically-stiffened plates are reported by Mace [31], where the bounding
frequencies of the propagation zones are shown to be linked to distinct propagation constants of m ¼ 0 and p
in the lateral direction (in-phase and out-of phase motion of adjacent bays). Similar wave groups for extruded
profile floor sections are also identified from spectral finite element investigations [32], but are not linked to the
investigated strip width.
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Fig. 16. Wavenumber content in the z-direction of five subelements (0:5m width): (a) profile A, (b) profile B and (c) profile C.
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The general observation of wave groups holds also for profile B. Wave shapes are omitted for profile B for
the sake of brevity.

The wave groups for profile C are even clearer as the coupling between different wave types is more distinct
than for profiles with inclined webs due to the right-angled web connections. Some typical wave shapes are
plotted in Fig. 18. Global wave motion as shown in Fig. 18(a) in the lateral direction is characterized by
significantly smaller wavelengths for a profile without inclined webs, corroborating the DFT and phase
constant surface results. This is related to an increased number of global waves cutting on in the low frequency
range for a plate width of 0:5m. The local waves show similar trends as described previously for profile A.

5. Application example: regional train floor section

In this section dispersion characteristics of a regional train floor section are investigated. Since this plate is
not strictly periodic in the lateral direction, the extraction of the dispersion characteristics using phase
constant surfaces is not an option. Hence, the WFE technique and the spatial Fourier transformation of
standard FE results are applied. For experimental validation, dispersion characteristics are extracted using the
IWC technique.

The light weight train floor section made of extruded aluminium sections which are line-welded in the
longitudinal z-direction is shown in Fig. 19(a).

The detailed geometry is not given here for the sake of brevity, but the plate thicknesses are 2:523mm,
overall thickness is 60mm and the main spacing between adjacent webs is about 180mm. This structure is not
strictly periodic and it has some outer ribs for inner floor and equipment fastening which are neglected in the
simulations.
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Fig. 17. Selected wave shapes for profile A (0:5 m width). (a) kz ¼ 41:9m�1, f ¼ 2000Hz; (b) kz ¼ 37:5m�1, f ¼ 2000Hz;

(c) kz ¼ 30:0m�1, f ¼ 2000Hz; (d) kz ¼ 63:3m�1, f ¼ 5000Hz; (e) kz ¼ 48:3m�1, f ¼ 5000Hz and (f) kz ¼ 11:2m�1, f ¼ 5000Hz.

Cross sectional plots (x–y) are included at the bottom for z ¼ 0.

T. Kohrs, B.A.T. Petersson / Journal of Sound and Vibration 321 (2009) 137–165156
The FE-modelled half cross section is shown in Fig. 19(b). As the forced response for excitation in the
y-direction at the centre of the plate is investigated here, only the half cross section is modelled and symmetric
boundary conditions are applied at the edge x ¼ 1:2m. The edge (x ¼ 020:4m) is highly damped with a loss
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Fig. 18. Selected wave shapes for profile C (0:5m width). (a) k ¼ 1:2m�1, f ¼ 500Hz; (b) kz ¼ 29:8m�1, f ¼ 2000Hz; (c) kz ¼ 27:4m�1,
f ¼ 2000Hz; (d) kz ¼ 7:8m�1, f ¼ 2000Hz; (e) kz ¼ 74:0m�1, f ¼ 5000Hz and (f) kz ¼ 36:7m�1, f ¼ 5000Hz. Cross sectional plots

(x–y) are included at the bottom for z ¼ 0.

T. Kohrs, B.A.T. Petersson / Journal of Sound and Vibration 321 (2009) 137–165 157
factor of Z ¼ 0:1 to reduce edge reflections. This simulates test conditions, where the edge is embedded in sand
and partially filled with foam wedges and sand to establish a smooth transition to the damped regions, see
Ref. [33] for details of the experimental set-up.
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Fig. 19. Light weight train floor section (extruded aluminium). (a) Photo (b) WFE model of half cross section, 20mm element length in the
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Fig. 20. Dispersion characteristics of propagating waves in light weight train floor with symmetric boundary conditions and infinite

extension in the z-direction using WFE approach.
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5.1. Calculated dispersion characteristics

The dispersion characteristics extracted from the WFE eigenvalue problem for symmetric waves of the plate
are shown in Fig. 20.6

Because of the irregularity of the cross section, the wave dispersion is less distinct than for the ideal generic
profiles investigated before. However, similar general trends can be observed. Solely global bending waves
propagate at frequencies up to 300Hz. At higher frequencies, again, different wave groups develop. For
6Only symmetric waves are included because of the symmetric boundary condition applied. This solution is sufficient to investigate the

case of symmetric excitation in the centre position.
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4000Hz, where most of the types have cut on, some wave shapes are plotted in Fig. 21 as examples of each
wavegroup.

The group with highest wavenumbers in Fig. 20 at 4000Hz is related to first-order cross modes of the outer
plate strips (see Fig. 21(a)). These local waves are the first to cut on in frequency because of the highest
distance between adjacent web joints. The second dispersion group of Fig. 20 is dominated by first-order cross
modes of the interior diagonal plates (see Fig. 21(b)). The amplitudes of the outer plates for this group are
significantly lower than for the inner webs.

For all the waves with high wavenumbers in the z-direction, the vibrating region in the x-direction
is bounded and the different waves in each group belong to different vibrating regions in the x-direction.
The straight intermediate webs exhibit a strong barrier for the wave motion which is passed only by the waves
with a low wavenumber in the z-direction (Figs. 21(h) and (i)).
Fig. 21. Selected wave shapes for half train floor plate with symmetric boundary conditions, f ¼ 4000Hz. (a) kz ¼ 77:0m�1,
(b) kz ¼ 73:9m�1, (c) kz ¼ 69:2m�1, (d) kz ¼ 59:2m�1, (e) kz ¼ 44:7m�1, (f) kz ¼ 24:7m�1, (g) kz ¼ 15:2m�1, (h) kz ¼ 8:0m�1 and

(i) kz ¼ 3:7m�1. Cross sectional plots (x–y) are included at the bottom for z ¼ 0.
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The wavegroups with lower wavenumbers than 60m�1 at 4000Hz are not as distinct as the first-order
modes previously described since different wavegroups overlap.

Figs. 21(c) and (d) show examples of second- and third-order cross modes of the outer plate strips,
respectively. Fig. 21(e) is a combination of third-order outer plate strip and second-order diagonal plate strip
modes, whereas Fig. 21(f) is a mixture of fourth-order outer plate and first-order straight inner web modes.

Some waves with global z-behaviour are shown in Figs. 21(g)–(i), where the last two waves comprise wave
motion extended over the complete profile width.

From the nature of the characteristic wave shapes some important aspects of structure-borne sound
propagation in the light weight profile at frequencies beyond the global wave region can be deduced:
�

7

sho
For local excitation of structures which are not strictly periodic, bounded wave motion is expected in the
section of excitation with power flow mainly in the z-direction.

�
 Irregularities such as heavy straight webs behave as wave ‘‘blockers’’.

�
 Extended lateral vibration of the plate is likely to be connected to global wave motion in the z-direction.

�
 Damping is acting locally in the region of the damped plate strips. The edge damping applied in the

example has very little effect on the characteristic waves propagating in the central region of the plate.

�
 The cut-on frequencies for cross modes in the plate strips are somewhere between the lateral

eigenfrequencies of simply supported and clamped plate strips. The low frequency edge of the wavegroup
corresponds roughly to the simply supported case, whereas the high frequency edge belongs to the clamped
case. This is in accordance with the observed wave shapes for the ideal periodic profiles investigated. The
variety of boundary conditions is achieved by different combinations of displacement patterns of adjacent
connected plate strips. For narrow light weight plates the amount of variations is limited which causes a
reduced set of emerging boundary conditions and related characteristic waves. For wider plates the number
of characteristic waves increases significantly as illustrated for the regional train floor example.

5.2. Measured dispersion characteristics

The measured velocity field of the plate is used to extract its dispersion characteristics. The limited test area
hampers the application of the spatial Fourier transform previously used for wavenumber extraction from
calculated response fields. In order to improve the resolution and the applicability for arbitrary test positions
the IWC method is applied [9,12].

For each frequency, dispersion characteristics in the kx–kz domain can be extracted. As an example the
results for 1000Hz are shown in Fig. 22.7 Results for other frequencies are omitted for the sake of brevity. The
strong wave guiding along the plate strip is obvious in the calculated and measured results of Fig. 22 with a
dominant dispersion line parallel to the kx-axis. The frequency shift due to the stiffening effect of the fillets at
the plate joints identified and reported in Ref. [1] is now manifested by a wavenumber shift for kz. The
stiffening effect speeds up the bending wave and reduces the wavenumbers.

Evaluated frequency dependent measured dispersion characteristics in the x- and z-direction are shown in
Fig. 23. In order to increase legibility the correlation values are normalized by the maximum value at each
frequency.

Dispersion characteristics extracted using the spatial Fourier transform approach of the force excited plate
are shown in Fig. 24 for comparison.

In general, wave propagation in the x-direction is not so distinct as in the z-direction. In the low frequency
range, global wave propagation with similar wavenumbers in both directions exists. For higher frequencies
waves with first-order cross modes dominate the propagation along the plate strips corroborating the insights
gained from the WFE investigations. A slight periodicity of the wavenumbers in the x-direction can be
observed as expected for nearly periodic systems. Faint decreasing dispersion lines, related to reflected waves,
are also detectable for calculated and measured results.
Due to different evaluation techniques (DFT and IWC) a direct quantitative comparison of the results is not possible. Interpretation

uld be based on pattern recognition.
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Fig. 22. DFT-calculated (left) and IWC-measured (right) dispersion characteristics of regional train floor section, f ¼ 1000Hz, Fy at the

centre of plate field.
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Dispersion in the z-direction can be compared also with WFE-results of Fig. 20 and show a high degree of
similarity for both calculation results. The measured dispersion follows the WFE-dispersion characteristics with
highest wavenumbers which are strongly excited. All other WFE dispersion branches with lower wavenumbers
are not excited in the measurement set-up with normal force excitation at the centre of a plate field.

6. Concluding remarks

The dispersion characteristics of light weight plates with truss-like core geometries demonstrates that wave
beaming is not only limited to structures with periodicity in both directions, but arises also for structures
comprising periodicity only in one direction. The strong periodic effects identified from the two-dimensional
investigation in Ref. [1] are evident in the three-dimensional plate investigation in the corresponding periodic
direction. In contrast to the strip investigation, where power transmission and wave propagation is nearly
completely suppressed in the stop-bands, the effect is reduced for the plates investigated. In the lateral stop-
bands wave propagation in the z-direction is still enabled and wave spreading in oblique directions depends on
the geometric profile layout, which influences the coupling mechanisms and wave conversions at the joints.
For profiles with inclined webs distinct wave beaming in oblique directions arise, whereas for a profile with
straight webs lateral coupling and oblique propagation is reduced. The frequency dependent stop-band
behaviour for one-dimensional wave propagation is ‘‘transformed’’ into a frequency dependent and spatially
varying attenuation for the two-dimensional propagation case, establishing low vibration regions for point
excited structures. The weakened stop-band effect makes general applications for noise control somewhat
delicate. In special situations where low vibration is requested especially in certain regions, e.g. for installation
of vibrational sensitive equipment, this strong wave beaming might be exploited. Moreover, design of
damping treatments can be optimized, at least for point excited structures, by exploiting the wave beaming
effects and aligning the damping treatments in the beaming directions from the point of excitation.
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Fig. 23. Measured dispersion characteristics using IWC method in (a) the x- and (b) the z-direction, normalized by the maximum of each

frequency, Fy at the centre of plate field.
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From a structural acoustic point of view it is vital to differentiate between subsonic and supersonic waves in
the light weight plates. The dispersion characteristics presented establish a basis for their discrimination. Only
the supersonic waves can couple efficiently to the ambient fluid. This is of major importance for radiation and
transmission investigations. For proper acoustic design it could be valuable to investigate where major
structural wave components become supersonic. In this respect the significant components of the space
harmonic series in the periodic direction have to be included as it seems to be possible that low supersonic
orders play a dominant role for radiation and transmission.
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Fig. 24. Calculated dispersion of train floor section in (a) the x- and (b) the z-direction using the spatial Fourier transform of standard

FE-results, Fy at the centre of plate field.
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The regional train floor example demonstrates the applicability of the waveguide finite element method for
free wave propagation on real extruded profile plates. It is demonstrated by validation measurements on
dispersion that the salient physical behaviour is adequately described by the calculation model. An improved
model could be established if the outer webs of the real floor would be included. This is in principle possible by
extending the WFE cross section model in this respect. Moreover, the stiffening effect of the fillets at the joints
should be included to improve accuracy of the models, e.g. by increasing the shell element thickness at the joints.

The WFE investigation of wave propagation reveals some interesting aspects for profile design. For
structures which show a significant aperiodicity, bounded wave motion is expected in the directly excited
section with power flow mainly in the direction parallel to the webs. Strong irregularities, e.g. a pair of straight
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webs, mainly arising at weld junctions can behave as wave blockers in lateral direction. Damping is expected
to act locally in the region of the damped plate strip. This observation can be used for efficient damping layer
layout, if local structure-borne excitation is of concern.
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